郅晓
2024年07月02日

主要从事基于BioMEMS微流控芯片的生物安全防控技术研究,相关研究成果发表在Advanced Science、ACS Nano、Advanced Materials、Advanced Functional Materials、Lab on a chip、Analytical Chemistry、Biomaterials、Biosensors & Bioelectronics等SCI期刊上,申请发明专利11项(已授权8项),获得上海市技术发明一等奖1项,主持和参与国自然基金(面上/重点)、国家重点研发计划(“纳米科技”专项、“数字诊疗装备研发”专项、“动物疫苗佐剂”揭榜挂帅)、卫生部“艾滋病和病毒性肝炎等重大传染病防治”重大专项、上海市科委基金、国家重点实验室开放基金等科研项目10余项。Frontiers in Bioengineering and Biotechnology副主编,Frontiers in Chemistry副主编,Microchemical Journal编委,Sensors客座主编。Analytical Chemistry、ACS Nano、Biosensors & Bioelectronics等多个SCI期刊审稿人。中国微米纳米技术学会会员,中国生物物理学会会员,九三学社上海市医药卫生委员会委员。

【研究方向】

(1)基于人工智能(AI)增强型MEMS传感器的微流控芯片,用于病原微生物高灵敏检测;(2)多物理场耦合微流控芯片,用于疫苗纳米递送载体/佐剂开发;

(3)集成实时传感技术的微流控器官芯片,用于病毒学基础研究。

【教育经历】

2009--2014,欧洲杯竞猜平台

2006--2009,扬州大学

2001--2006,河南科技大学,河南农业大学

【工作经历】

2018.1至今,欧洲杯竞猜平台/上海市病毒研究院,助理研究员,副研究员

2014.7——2017.12,欧洲杯竞猜平台,博士后

【科研项目】

1.国家重点研发项目子课题,2023YFD1802602-2,基于微流控技术的可降解纳米锰佐剂研制,2023.12-2027.12,主持

2.上海市科委“科技创新行动计划”,23JC1403400,冠状病毒-宿主互作动态全景图绘制及其跨物种传播机制,2023.12-2026.11,参与

3.国家自然科学基金(面上),62371293,基于微流控纳米微腔芯片的胃癌单外泌体miRNA/CRISPR检测新方法研究,2024.1-2027.12,主持

4.国家自然科学基金(重点),62231025,集成实时传感技术的一体化多器官联动中药筛选芯片的研究,2023.1-2027.12,项目骨干

5.国家自然科学基金(面上),22275122,基于树状大分子的SARS-CoV-2刺突蛋白受体结合域纳米颗粒候选疫苗的开发,2023.1-2026.12,参与

6.国家自然科学基金(面上),81971736,纳米氧化石墨烯复合佐剂增强免疫应答的细胞表型谱研究,2020.1-2023.12,主持

7.上海市科委“科技创新行动计划”,22N31900400,基于超晶格阵列电化学传感器的微流控芯片在食源性病毒检测中的应用研究,2022.4-2025.3,主持

8.上海市自然科学基金(面上),21ZR1435000,基于微流控芯片和飞行时间二次离子质谱的胃癌单外泌体表面蛋白异质性分析,2021.4-2024.3,主持

9.病原微生物生物安全国家重点实验室开放基金,SKLPBS1827,肉毒毒素高灵敏电化学微流控检测芯片的研制,2018.11-2020.10,主持

10.欧洲杯竞猜平台医工交叉研究基金,YG2021QN58,基于微流控芯片的口腔黏膜苔藓样损害组织的外泌体纯化分离与质谱分析,2021.1-2023.12,共同主持

11.欧洲杯竞猜平台医工交叉研究基金,ZH2018QNA27,基于LAMP技术的纸基微流控芯片在儿童呼吸道感染病病原学诊断中的应用研究,2019.1-2021.12,共同主持

12.欧洲杯竞猜平台医工交叉研究基金,ZH2018QNA51,荧光超顺磁性纳米探针靶向破坏胃癌微环境外泌体逆转胃癌细胞顺铂耐药研究,2019.1-2021.12,共同主持

13.国家重点研发计划“纳米科技”重点专项,2017YFA0205400,胃癌早期筛查与全病程监测的纳米技术及转化研究,2017.7-2022.6,参与

14.国家重点研发计划“数字诊疗装备研发”重点专项,2016YFC0100900,新一代高通量数字PCR关键技术及应用研究,2016.1-2018.12,参与

15.上海市科委科技支撑计划,15441904800,用于提取循环肿瘤细胞的单细胞操控仪关键技术研究,2016.1-2018.12,参与

【近五年发表文章】

[1] Huang S, Li Y, Zhang S, et al. A self-assembled graphene oxide adjuvant induces both enhanced humoral and cellular immune responses in influenza vaccine[J]. Journal of Controlled Release, 2024, 365: 716-728.

[2] Zhang Y, Huang F, Song J, et al. Hardware verification of a micro-scale receiver for synthetic DNA molecular communications[J]. IEEE Transactions on Molecular, Biological and Multi-Scale Communications, 2023.

[3] Zeng M, Ke Y, Zhuang Z, et al. Harnessing Multiplex crRNA in the CRISPR/Cas12a System Enables an Amplification-Free DNA Diagnostic Platform for ASFV Detection[J]. Analytical Chemistry, 2022, 94(30): 10805-10812.

[4] Yuqing K, Behafarid G, Shiyi H, et al. 2′-O-Methyl modified guide RNA promotes the single nucleotide polymorphism (SNP) discrimination ability of CRISPR-Cas12a systems[J]. Chemical Science, 2022, 13(7): 2050-2063.

[5] Huang S, Li S, Ghalandari B, et al. Encountering and wrestling: Neutrophils recognize and defensively degrade graphene oxide[J]. Advanced Healthcare Materials, 2022, 11(8): 2102439.

[6] Yu Z, Warden R A, Zara A K, et al. Single-cell microwell platform reveals circulating neural cells as a clinical indicator for patients with blood-brain barrier breakdown[J]. Research, 2021, 2021: 9873545.

[7] Yu Y, Wang X, Jia X, et al. Aptamer Probes Labeled with Lanthanide-Doped Carbon Nanodots Permit Dual-Modal Fluorescence and Mass Cytometric Imaging[J]. Advanced Science, 2021, 8(24): 2102812.

[8] Yan S, Ahmad K Z, Li S, et al. Pre-coated interface proximity extension reaction assay enables trace protein detection with single-digit accuracy[J]. Biosensors & Bioelectronics, 2021, 183: 113211.

[9] Su J, Ke Y, Maboyi N, et al. CRISPR/Cas12a powered DNA framework-supported electrochemical biosensing platform for ultrasensitive nucleic acid analysis[J]. Small Methods, 2021, 5(12): 2100935.

[10] Li S, Ke Y, Dang J, et al. A HiPAD integrated with rGO/MWCNTs nano-circuit heater for visual point-of-care testing of SARS-CoV-2[J]. Advanced Functional Materials, 2021, 31(26): 2100801.

[11] Li H, Warden A R, Su W, et al. Highly sensitive and portable mRNA detection platform for early cancer detection[J]. Journal of Nanobiotechnology, 2021, 19(1): 1-10.

[12] Ke Y, Huang S, Ghalandari B, et al. Hairpin-spacer crRNA-enhanced CRISPR/Cas13a system promotes the specificity of single nucleotide polymorphism (SNP) identification[J]. Advanced Science, 2021, 8(6): 2003611.

[13] He J, Li H, Zhang L, et al. Silver microspheres aggregation-induced Raman enhanced scattering used for rapid detection of carbendazim in Chinese tea[J]. Food Chemistry, 2021, 339: 128085.

[14] Dang J, Li H, Zhang L, et al. New structure mass tag based on Zr-NMOF for multiparameter and sensitive single-cell interrogating in mass cytometry[J]. Advanced Materials, 2021, 33(35): 2008297.

[15] Zhang T, Li S, Warden A R, et al. A photoclick hydrogel for enhanced single-cell immunoblotting[J]. Advanced Functional Materials, 2020, 30(17): 1910739.

[16] Yu Y, Dang J, Liu X, et al. Metal-Labeled Aptamers as Novel Nanoprobes for Imaging Mass Cytometry Analysis[J]. Analytical Chemistry, 2020, 92(9): 6312-6320.

[17] Zhi X, Liu Y, Lin L, et al. Oral pH sensitive GNS@Ab nanoprobes for targeted therapy of Helicobacter pylori without disturbance gut microbiome[J]. Nanomedicine: nanotechnology, biology, and medicine, 2019, 20: 102019.

[18] Zhi X, Chen L, Gao S, et al. Temperature gap drives directed diffusion in microfluidic chip system[J]. Microfluidics and Nanofluidics, 2019, 23(3): 40.

[19] Wang L, Zhang C, Zhi X, et al. Impact of short-term exposure of AuNCs on the gut microbiota of BALB/c mice[J]. Journal of biomedical nanotechnology, 2019, 15(4): 779-789.

[20] Lin S, Zhi X, Chen D, et al. A flyover style microfluidic chip for highly purified magnetic cell separation[J]. Biosensors & Bioelectronics, 2019, 129: 175-181.